NA2XS(F)2Y/ N2XS(F)2Y 26/45(52) kV Cables

Applications

This specification covers medium-voltage cables, for rating voltage of 26/45 kV, having XLPE (cross-linked polyethylene) insulation.

The cables covered by this specification are designed to be used mainly in utilities,

for transmission and distribution lines having working voltage 26/45 kV, for outdoor or indoor installation. They may be use at a maximum conductor working temperature of 90°C.

They may be used inside stations or sub-stations.

They may also be used in conjunction with overhead transmission lines.

Mandatory conditions for the supply of cable manufactured abroad:

- Eur1 or U.S. Certificate of origin.
- An Israeli manufacturer is not obligated by this requirement.

1. Reference Standards and documents

The cables covered by this specification are manufactured and tested as per the following references:

2.1	IEC 60840	Power cables with extruded insulation and their accessories for rated voltagesabove 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV) – Test methods and requirements
2.2	HD 632	Power cables with extruded insulation and their accessories for rated voltages above 36 kV (Um = 42 kV) up to 150 kV (Um = 170 kV)
2.3	IEC 60183	Guidance for the selection of high-voltage A.C. cable systems
2.4	IEC 60228	Conductors of insulated cables
2.5	IEC 60229	Electric Cables – Tests on extruded oversheaths with a special protective function.
2.6	IEC 61443	Short-circuits temperature limits of electric cables with rated voltages above 30kV(Um=36kV)
2.7	IEC 60811 series	Common test methods for insulation and sheathing materials of electrical and optical cables

2. Medium-Voltage Cables Construction

2.1 Conductor

Conductors used in Medium-Voltage Cables construction are stranded from aluminum or copper wires. Conductors have a cross-sectional area up to and including 800 mm² and are class 2, compact-round stranded.

2.2 Conductor screen

An extruded layer of semi-conductive, cross-linked polymer, firmly bonded to the insulation, is applied over the conductor.

2.3 Insulation

An extruded layer of extra-clean XLPE (cross-linked polyethylene) is subsequently applied.

2.4 Insulation screen

An extruded layer of semi-conductive cross-linked polymer firmly bonded to the insulation. Note: Conductor screen, insulation and insulation screen are extruded in a single operation.

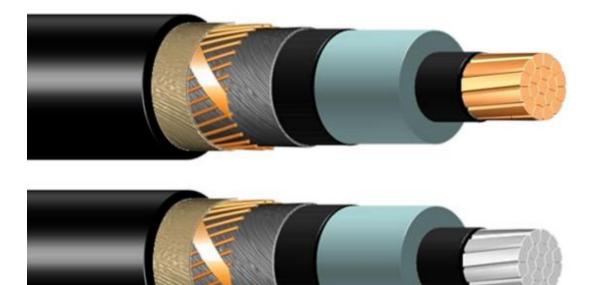
2.5 Metal screen

A semi-conductive tape is helically applied around the completed insulated core, as bedding between insulation screen and metal screen components.

Metal screen is built from copper round wires and copper equalizing tape.

2.6 Longitudinal water-blocking barrier

A semi-conductive and swelling tape is helically applied around the screened core.


2.7 Outer protective sheath

A black HDPE sheath is extruded overall.

2.8 Constructive options

Conductor: water-blocked conductor

Typical Drawing of Medium-Voltage Cables

NA2XS(F)2Y 26/45(52) kV ALUMINUM CONDUCTOR

Construction and Dimensional Data

Conductor Cross- Sectional Area	Conductor dc resistance at 20°C (max.)	Conductor Diameter (Approx.)	Insulation Thickness (Nom.)	Metal Screen Cross- Sectional Area	Outer Protective Sheath Thickness (Nom.)	Overall Diameter	Min. Bending Radius - Static (1)	Min. Bending Radius - Dynamic (2), (3)	Completed Cable Weight (approx.)
mm²	-	mm	mm	mm²	mm	mm	mm	mm	kg/km
150	0.206	14.5	10.5	25	2.5	46.5	700	1165	1,870
185	0.164	16.3	10.5	25	2.5	48.0	720	1200	2,045

Remarks:

(1)– Minimum bending radius for permanent training;

(2)– Minimum bending radius for pulling in duct;

(3) – The sidewall pressure shall be kept below the value of 1000 daN/m (10 kN/m).

Continuous current ratings

Me Ser Cro Secti	Conductor/ MetalDirect Buried, Touching- Cross-Cross-TrefoilSectional(1), (4), (7) Area		Direct Buried, Spaced Flat- Parallel (1), (5), (7)	Buried in Ducts, Spaced Flat- Parallel (2), (6), (7)	In Free Air (3), (4), (7)	In Free Air (3), (5), (7)	
m	m ²	А	А	А	А	А	
1	150/25	280	291	278	380	431	
1	185/25	317	328	313	437	494	

Remarks:

(1)– Direct Buried, burial depth = 0.8 m, native soil thermal resistivity = 1.5 K*m/w, soil ambient temperature = 20°C;

(2)– Buried in single way ducts, burial depth = 0.8 m, native soil thermal resistivity = 1.5 K*m/w, soil ambient temperature = 20°C;

(3) – In Free Air, protected against direct sun radiation, ambient air temperature = 30°C

(4)- Touching-trefoil formation;

(5) – Flat-parallel formation, inter-axial spacing = 2 x D of the cable;

(6) – Flat-parallel formation, inter-axial spacing = 2 x D of the duct;

(7) – Conductor continuous working temperature = 90°C, metal screens bonded in multiple points.

Electrical parameters (Capacitance and Sequence Impedances)

Conductor/ Metal	Electrostatic	Touching Trefoil Formation				Flat-Parallel Formation			
Screen Cross- Sectional Area	Capacitance (Nom.)	R1	X1	R0	X0	R1	X1	R0	X0
mm ²	μF/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km
150/25	0.164	0.268	0.132	0.976	0.390	0.276	0.188	0.952	0.395
185/25	0.177	0.214	0.127	0.922	0.387	0.223	0.183	0.899	0.392

Remarks:

Flat-parallel formation, inter-axial spacing = 2 x D of the cable;

Conductor continuous working temperature = 90°C, metal screens bonded in multiple points.

N2XS(F)2Y 26/45(52) kV COPPER CONDUCTOR

Conductor Cross- Sectional Area	Conductor dc resistance at 20°C (max.)	Conductor Diameter (Approx.)	Insulation Thickness (Nom.)	Metal Screen Cross- Sectional Area	Outer Protective Sheath Thickness (Nom.)	Overall Diameter	Min. Bending Radius - Static (1)	Min. Bending Radius - Dynamic (2), (3)	Completed Cable Weight (approx.)
mm ²	-	mm	mm	mm²	mm	mm	mm	mm	kg/km
95	0.193	11.7	10.5	25	2.5	43.5	655	1090	2,200

Construction and Dimensional Data

Remarks:

- (1)– Minimum bending radius for permanent training;
- (2)– Minimum bending radius for pulling in duct;
- (3) The sidewall pressure shall be kept below the value of 1000 daN/m (10 kN/m).

Conductor/ Metal Direct Buried, Buried in Ducts, Direct Buried, Screen Touching-Spaced Flat-Spaced Flat-In Free Air In Free Air Cross-Trefoil Parallel Parallel (3), (5), (7) (3), (4), (7) Sectional (1), (4), (7) (1), (5), (7) (2), (6), (7) Area mm^2 Α A Α A Α 282 377 95/25 285 295

Continuous current ratings

Remarks:

(1)– Direct Buried, burial depth = 0.8 m, native soil thermal resistivity = 1.5 K*m/w, soil ambient temperature = 20°C;

425

(2)– Buried in single way ducts, burial depth = 0.8 m, native soil thermal resistivity = 1.5 K*m/w, soil ambient temperature = 20°C;

(3) – In Free Air, protected against direct sun radiation, ambient air temperature = 30°C

(4)- Touching-trefoil formation;

(5) – Flat-parallel formation, inter-axial spacing = 2 x D of the cable;

(6) – Flat-parallel formation, inter-axial spacing = 2 x D of the duct;

(7) – Conductor continuous working temperature = 90°C, metal screens bonded in multiple points.

Conductor/ Metal Screen Cross- Sectional Area	Electrostatic	Tou	iching Tref	foil Forma	tion	Flat-Parallel Formation			
	Electrostatic Capacitance (Nom.)	R1	X1	R0	X0	R1	X1	R0	X0
mm^2	μF/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km	Ω/km
95/25	0.144	0.250	0.141	0.958	0.396	0.259	0.197	0.935	0.401

Electrical parameters (Capacitance and Sequence Impedances)

Remarks:

Flat-parallel formation, inter-axial spacing = 2 x D of the cable;

Conductor continuous working temperature = 90°C, metal screens bonded in multiple points.

SHORT-CIRCUIT LIMITS

During the short-circuit working, the current-carrying components of the cable may reach a high temperature which could endanger the polymeric materials used for insulation.

In order to prevent this, the fault-current and/or fault-duration shall be limited to the values specified in the following tables:

	СС	OPPER CON (N2XS(F)2		S	ALUMINUM CONDUCTORS (NA2XS(F)2Ycables) Fault duration (s)				
Conductor Cross-		Fault dura	ation (s)						
Sectional Area	0.5	1	1.5	2	0.5	1	1.5	2	
		Fault-Curre	ent (max.)		Fault-Current (max.)				
mm ²	kA	kA	kA	kA	kA	kA	kA	kA	
95	19.0	13.5	11	9.5	12.5	9.0	7.5	6.5	
120	24.5	17	14	12	16	11.5	9.5	8.0	
150	30.5	21.5	17.5	15	20	14	11.5	10	
185	37.5	26.5	21.5	18.4	24.5	17.5	14.5	12.5	

SHORT-CIRCUIT CURRENT IN CONDUCTOR

SHORT-CIRCUIT CURRENT IN METAL SCREEN

Metal Screen	Fault duration (s)							
Cross- Sectional Area	0.5	1	1.5	2				
Sectional Thea	Fault-Current							
mm ²	kA	kA	kA	kA				
25	4.5	3.2	2.6	2.3				

quotation

Conductor Cross	Length	Price [meter]	Price [Total]
1x95+25 N2XS(F)2Y	3000m		

 ** The goods will be supplied in three cable drums, each drum containing 1000±2.5% meter of cable.